Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media

نویسندگان

  • Ching-Shan Chou
  • Chi-Wang Shu
  • Yulong Xing
چکیده

Solving wave propagation problems within heterogeneous media has been of great interest and has a wide range of applications in physics and engineering. The design of numerical methods for such general wave propagation problems is challenging because the energy conserving property has to be incorporated in the numerical algorithms in order to minimize the phase or shape errors after long time integration. In this paper, we focus on multidimensional wave problems and consider linear second-order wave equation in heterogeneous media. We develop and analyze an LDG method, in which numerical fluxes are carefully designed to maintain the energy preserving property and accuracy. Compatible high order energy conserving time integrators are also proposed. The optimal error estimates and the energy conserving property are proved for the semi-discrete methods. Our numerical experiments demonstrate optimal rates of convergence, and show that the errors of the numerical solution do not grow significantly in time due to the energy conserving property.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy conserving local discontinuous Galerkin methods for wave propagation problems

Abstract Wave propagation problems arise in a wide range of applications. The energy conserving property is one of the guiding principles for numerical algorithms, in order to minimize the phase or shape errors after long time integration. In this paper, we develop and analyze a local discontinuous Galerkin (LDG) method for solving the wave equation. We prove optimal error estimates, superconve...

متن کامل

Optimal Discontinuous Galerkin Methods for the Acoustic Wave Equation in Higher Dimensions

In this paper, we develop and analyze a new class of discontinuous Galerkin (DG) methods for the acoustic wave equation in mixed form. Traditional mixed finite element (FE) methods produce energy conserving schemes, but these schemes are implicit, making the time-stepping inefficient. Standard DG methods give explicit schemes, but these approaches are typically dissipative or suboptimally conve...

متن کامل

Finite Difference and Discontinuous Galerkin Methods for Wave Equations

Wang, S. 2017. Finite Difference and Discontinuous Galerkin Methods for Wave Equations. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1522. 53 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9927-3. Wave propagation problems can be modeled by partial differential equations. In this thesis, we study wave propagation in fluids and...

متن کامل

Discontinuous finite element methods for a bi-wave equation modeling d-wave superconductors

This paper concerns discontinuous finite element approximations of a fourth-order bi-wave equation arising as a simplified Ginzburg-Landautype model for d-wave superconductors in the absence of an applied magnetic field. In the first half of the paper, we construct a variant of the Morley finite element method, which was originally developed for approximating the fourthorder biharmonic equation...

متن کامل

AnEnergyConserving Local DiscontinuousGalerkin Method for a Nonlinear Variational Wave Equation

We design and numerically validate a local discontinuous Galerkin (LDG) method to compute solutions to the initial value problem for a nonlinear variational wave equation originally proposed tomodel liquid crystals. For the semi-discrete LDG formulation with a class of alternating numerical fluxes, the energy conserving property is verified. A dissipative scheme is also introduced by locally im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 272  شماره 

صفحات  -

تاریخ انتشار 2014